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Abstract

Conceptual knowledge is fundamental to hu-
man cognition and knowledge bases. However,
existing knowledge probing works only focus
on evaluating factual knowledge of pre-trained
language models (PLMs) and ignore concep-
tual knowledge. Since conceptual knowledge
often appears as implicit commonsense behind
texts, designing probes for conceptual knowl-
edge is hard. Inspired by knowledge represen-
tation schemata, we comprehensively evaluate
conceptual knowledge of PLMs by designing
three tasks to probe whether PLMs organize
entities by conceptual similarities, learn con-
ceptual properties, and conceptualize entities
in contexts, respectively. For the tasks, we col-
lect and annotate 24k data instances covering
393 concepts, which is COPEN, a COncep-
tual knowledge Probing bENchmark. Exten-
sive experiments on different sizes and types
of PLMs show that existing PLMs systemat-
ically lack conceptual knowledge and suffer
from various spurious correlations. We be-
lieve this is a critical bottleneck for realiz-
ing human-like cognition in PLMs. COPEN
and our codes are publicly released at https:
//github.com/THU-KEG/COPEN.

1 Introduction

Pre-trained language models (PLMs) have achieved
superior performance on most NLP tasks requir-
ing substantial world knowledge (Qiu et al., 2020;
Han et al., 2021). It is interesting and meaning-
ful to probe the extent and scope of world knowl-
edge within PLMs. Existing knowledge probing
works have evaluated PLMs’ knowledge about en-
tities (Broscheit, 2019; Tenney et al., 2019a) and
their relations (Petroni et al., 2019; Jiang et al.,
2020; Roberts et al., 2020), i.e., factual knowledge,
but ignore conceptual knowledge.
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Figure 1: An example knowledge graph. Entities are or-
ganized by concepts through the Instance of relation
and concepts are organized into a taxonomy through the
Subclass of relation. Each concept has certain prop-
erties. Existing work only probes factual knowledge
in entity graphs, ignoring conceptual knowledge in the
concept taxonomy and Instance of relation.

Conceptual knowledge, especially the abstrac-
tion ability, is fundamental to all kinds of hu-
man cognition (Carey, 1991; Collins and Olson,
2014) including language processing (Waxman and
Markow, 1995; Wellsby and Pexman, 2014). Just
as the quote of psychologist Gregory Murphy, con-
cepts are the glue that holds our mental world
together (Murphy, 2004). Moreover, knowledge
bases (Suchanek et al., 2007; Auer et al., 2007,
Vrandecié, 2012) organize massive entities via con-
cept taxonomies as illustrated in Figure 1, which
enable broad applications (Lv et al., 2018; Zhou
et al., 2021). Therefore, probing whether PLMs
have human-like conceptual knowledge is neces-
sary in knowledge probing.

Inspired by the conceptual schema in knowledge
representations (Sowa, 1976; Decker et al., 2000;
McGuinness et al., 2004; Antoniou and Van Harme-
len, 2004), we comprehensively evaluate the con-
ceptual knowledge of PLMs by asking three ques-
tions: Do PLMs organize entities by conceptual
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similarities? Do PLMs know the properties of con-els (LMs), which include three types: masked
cepts? Can PLMs correctly conceptualize entitiesMs (Devlin et al., 2019; Liu et al., 2019b), autore-
in contexts? In this paper, we design three probingressive LMs (Radford et al., 2019; Black et al.,
tasks for these questions: (1) Tbenceptual simi- 2021), and sequence-to-sequence LMs (Lewis
larity judgment (CSJ) task studies whether PLMs et al., 2020; Raffel et al., 2020). We conduct the
organize entities by conceptual similarities, whichexperiments in three settings: (1) zero-shot prob-
is the basis of understanding concepts. Given &g, which reformulates the probing tasks into pre-
query entity, CSJ requires PLMs to choose the modiraining objectives and lets PLMs score answers
conceptually similar entity among candidate entiwithout any training (Petroni et al., 2019); (2) linear
ties. For example, in Figure 1, giv@vlly asthe probing, which only tunes additional linear classi -
query entity, althoughJkhas a direct relation and cation heads and uses them to handle probing tasks
more co-occurrences with it, PLMs should choosewith the frozen representations produced by PLMs;
Grumpy Cat(2) Theconceptual property judg- (3) ne-tuning, which tunes all the PLM parame-
ment (CPJ) task probes whether PLMs have theters. Experiments show that existing PLMs achieve
knowledge of conceptual properties, which are theron-trivial performance but still signi cantly un-
generic abstractions of factual knowledge. Given alerperform ordinary persons on all three probing
statement about a speci ¢ property, such have tasks. Further analyses show that PLMs suffer from
feathers, CPJ requires PLMs to judge whether it spurious correlations like word co-occurrences and
is true for a speci ¢ concept and also a concepbut-of-context predictions, and increasing model
chain, which evaluates whether PLMs understandcale brings marginal improvements.
the property transitivity among a chain of hierar- To summarize, our contributions are three-fold:
chical concepts. (3) Theonceptualization in con- (1) We propose to probe PLMs for conceptual
texts (CiC) task evaluates the abilities of PLMs knowledge, which has long been ignored, and de-
to correctly conceptualize entities within contextssign three probing tasks inspired by the knowledge
Given an entity mentioned in a speci c context,representation works. (2) We construct COPEN,
PLMs are required to choose the most appropria probing benchmark containing high-quality con-
ate concept in a concept taxonomy according te@ept taxonomy and probes. (3) We empirically
its context. CiC requires not only disambiguatingshow that existing PLMs systematically lack con-
entity mentions, but also distinguishing superordieeptual knowledge and analyze the reasons. We
nate and subordinate concepts. For instance, givetope our benchmark and ndings could facili-
the context Dolly is running on the grasslarid tate further research on concept-aware PLMs and
PLMs should conceptualizBolly as anAnimal  human-like language understandings.
since there is no enough evidence ftammal

Based on the above considerations, we cor2 COPEN Benchmark
struct a conceptual knowledge probing benchmarli,n

COPEN, which contains a concept taxonomy with K including th fruct £ 1h i
446 concepts and high-quality data @#K in- mark, Inciuding the construction of the concep

stances for the three probing tasks. The Conceé?xonomy (§ 2.1) and the datasets for three prob-

taxonomy is curated by experts based on DBpéUg tasks (88 2.2 to 2.4). More construction and

dia (Auer et al., 2007) and Wikidata (Vrarde annotation details are shown in appendix D.

and Krétzsch, 2014) to fo'rr_n a well-de nec_j hierar-zl1 COPEN Concept Taxonomy

chy and cover broad entities. The data instances

for three tasks are collected by aligning entitiesP€Signing the three probing tasks takes inspira-

in Wikidata and sentences in GenericskB (Bhaklion from concept schemata in knowledge rep-

thavatsalam et al., 2020), Wikipedjand Simple resentations (Decker et al., 2000; McGuinness

Wikipedia into the concept taxonomy and then €t al., 2004), which are widely used in knowledge

manually annotated by crowd-sourcing annotatorglfaphs (Suchanek et al., 2007; Auer et al., 2007;
We conduct extensive experiments on COPEN/Tandeic, 2012). In general, it uses tirestance

to evaluate various widely-used language mocf?f relation to link the entities (speci ¢ instances)
into abstract concepts, and usesghbbclass of

Ihttps://en.wikipedia.org/ relation to organize the concepts into a taxonomy.
2hitps://simple.wikipedia.org/ Each concept has certain properties describing it as

this session, we introduce our COPEN bench-
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Figure 2: Examples for casting the data of three probing tasks into natural language prompts in zero-shot probing.
The names of entities or concepts are the text looked up in Wikidata using their IDs. In Figuexi®)n bold

(true or false) denote answers. In Figure (b) and (c), the concept chaarse—> Mammal> Animal. In Figure

(c), for entities with multiple concept chains, each concept will be scored independently by PLMs, i.e., the PLMs
make concept-level predictions only. There is no dedicated chain selection procedure.

the example shown in Figure 1. Train Dev  Test

To support probing dataset construction, we man- #instance 4:462 1116 3909
ually curate a concept taxonomy based on DBpe- CSJ 4Concept 84 84 90
dia (Auer et al., 2007) and Wikidata (Vrarzie cpy *nstance 3,274 823 4758
and Krotzsch, 2014) iB steps: (1) Obtain a basic #Concept 215 195 178
taxonomy from DBpedia. We extract the frequent cic fnstance 2,888 722 2368
concepts of DBpedia, which are the concepts with #Concept 193 184 155

at leastb instances, and keep thseibclass of
relations between them. (2) Align DBpedia and
Wikidata. For each DBpedia concept, we man-

ually nd its equivalent Wikidata item and then tity (instance of the same superordinate concept)
use thesubclass of (P279 relations in Wiki- among some candidates. As in Figure 2 (a), PLMs
data to expand the concept taxonomy and use thgéhould choos@ohang Steelersfor Inter Milan
instance of (P3] relations to link massive Wiki- since they are both football clubs, althoudiian
data entities into the concepts. (3) Simplify theandinter Milan co-occur more frequently. The
taxonomy. We further remove some unusual conconceptual similarity here is similar to thehy-
cepts to simplify the taxonomy by the guidanceponymrelation in lexical semantics (Cruse, 1986),
from Schema.org (Guha et al., 2016). For exampleyhich has been shown to be distinct from but eas-
Personis a sub-concept ofnimal, Eukaryote, jly in uenced by spurious co-occurrence associa-
andSpecies in DBpedia, which is reasonable but tions (Hill et al., 2015). Thus we need to control the

inconvenient for real-world applications. Follow- in uence of co-occurrences to get faithful results.
ing Schema.org, we slersonas a top-level con-

cept in the taxonomy. Finally, we achieve a treeData Collection The data for CSJ is collected
structure concise concept taxonomy, which conin two steps: (1) Automatic collection. We rst
tains446 concepts covering5 million Wikidata samplel74concepts that are not subordinates to
entities. There ar@3 top-level concepts, and we each other. Then we retries® Wikidata entities
usellof them and their sub-concepts for constructmost frequently showing up in the Wikipedia cor-
ing training and development datasets as well apus for each concept, and then build data instances
the other concepts for the testing datasets. by combining them. Each instance consists of a
guery entity, an answer entity of the same concept,
and20 distractor entities, among whidhare hard
The conceptual similarity judgment (CSJ) task isdistractors of concepts sharing superordinates with
a multiple-choice classi cation task, which probesthe concept of query entity. To check the data qual-
whether PLMs organize entities by conceptual simity, we sample200instances and nd little noise.
ilarities, i.e., whether PLMs learn thiastance (2) Co-occurrence-based Itering. To reduce the
of relation. Given a query entity, CSJ requiresin uence of co-occurrences, we need to lter out
PLMs to choose the most conceptually similar enthe instances that can be easily solved with co-

Table 1: COPEN data statistics for three probing tasks.

2.2 Conceptual Similarity Judgment



occurrences. Lastra-Diaz et al. (2019) show tha?2.4 Conceptualization in Contexts

Glovg Wor.d embedding (Pennlngt'on et aI.., 20140 conceptualization in contexts (CiC) task is a
contains rich word co-occurrence information bUtmuItipIe—choice classi cation task, which probes

limited coh_yponym knqwleqlge. Hence we use "\yhether PLMs can correctly conceptualize entities
to Iter out instances with higher word similarity within contexts. Given an entity mentioned in a

betwee_:rj the query and answer'entity than diStra%beci ¢ sentence, PLMs are required to choose the
tor entities. We nally get9;487 instances, each most appropriate concept among a concept chain,

‘”C'“d‘”?’ aquery entity and1 candidate gntities. which is a chain of concepts connected with the
The statistics of data subsets are shown in Table %ubclass of relation in order. This requires PLMs

to understand theubclass of relation and cap-
ture the subtle differences of different-level con-
The conceptual property judgment (CPJ) task is @epts in a hierarchy. For example in Figure 2
binary sentence classi cation task, which probeS(C)’ given the sentencBolly is running on the
whether PLMs know th@ropertiesof concepts. grassland.and a concept chaidorse—> Mammal
Given a statement describing a certain conceptual animal, PLMs shall choosénimal for Dolly
property, PLMs are required to judge whether it isgince the context do not support more ne-grained
true. For example in Figure 2 (b), PLMs shouldconcepts. Sometimes the entity is of multiple con-
predict “true” for the statement instanbd&ammals cept chains, for exampldjmmy Carteris both
raise their young on milk aWriter and aPolitician , which additionally
Besides evaluating CPJ at instance level, whichequires PLMs to disambiguate.
re ects the PLMs' knowledge about properties for
different individual concepts, we also setlzain- Data Collection The data for CiC is collected
level evaluation, in which a PLM correctly judges in two steps: (1) Sentence collection. For each
a property if and only if it correctly judges the concept, we rst retrievelO Wikidata entities most
property for every concept in@oncept chainAs  frequently showing up in the Wikipedia corpus.
the example in Figure 2 (b), a concept chain is @mong the retrieved entities, we only keep the enti-
chain of concepts connected with teebclass  ties linked with the concept chains containing more
of relation in order. The chain-level evaluationthan one concepts and collécsentences for each
evaluates whether PLMs understand the transitivit@f them from Wikipedia and SimpleWiki, which
of conceptual properties. It means that a propertprovides various contexts for conceptualization. A
holds for a concept also holds for its subordinatesentence, together with an entity mentioned in the
concepts, but may not hold for its superordinatesentence and concept chains of the entity, consti-
concepts like the case in Figure 2 (b). tutes an instance. (2) Human annotation. We then
organize crowd-sourcing annotation to obtain the
Data Collection The data for CPJ is collected |apels. All annotators are well-trained and quali-
in two steps: (1) Automatic collection. For each gg \we nally get 5:978instances for CiC and the

concept in our taxonomy, we align it with the gtatistics of data subsets are shown in Table 1.
statements of GenericsKB (Bhakthavatsalam et al.,

2020), a high-quality knowledge base for naturally3 Evaluation Setup

occurring generic statements, by lexical matching

s0 as to get positive instances. Then we replace th& introduce the various widely-used PLMs inves-
concept mention with other concept names to odigated in our experiments (§ 3.1) and the three
tain negative instances. (2) Human annotation. T&dopted probing methods (§ 3.2).

ensure data quality, we invite annotators to check
whether the instances are correctly labeled, gran;i—'1
matically correct, and describing concept propeme investigate three mainstream types of PLMs: (1)
ties. All annotators are well-trained and pass a quaMasked LM, including BERT (Devlin et al., 2019),

i cation before annotation. We nally ge8;855 which is pre-trained with the bidirectional masked
instances for CPJ and the statistics of data subsel@nguage modeling and next sentence prediction
are shown in Table 1. Additionally, the nal test objectives, and ROBERTa (Liu et al., 2019b), which
data included4.02concept chains and correspond-s a robustly optimized version of BERT. (Au-

ing properties used for chain-level evaluation.  toregressive LM, including GPT-2 (Radford et al.,

2.3 Conceptual Property Judgment

Investigated PLMs



csJ \ CPJ \ cic

\
Model | | Instance-Level | Chain-Level |

| zp LP FT| zpP LP FT| zpP LP FT| zpP LP FT
Random ‘ 4:8 4:8 4:8 ‘ 50:0 50:0 50:.0 ‘ 7:2 7.2 72 ‘ 277 277 277
BERTgase 20:3 16:10.21 27:30.86 49:4 61:60.28 68:10.98 22:5 24:21.22 23:21.22 376 34:30.59 49:5¢ 60
ROBERT@ASE 15:5 1200_21 22230_51 49:2 6]_'90_13 72:00_54 21:6 13211_57 18:31_22 314 30:01_93 52:61_02
GPT-Zase 79 4:30.24 20:10.23 51:5 64:81 14 70:40.72 147 14:4¢ 92 20:32.01 32.3 34:5;.08 54:20.12
GPT—NeQ25M 79 1]_'00_20 18130_42 52:2 6220_21 68120_52 22:5 15102_01 19:02.81 32:6 39160_93 47:40_25
BARTgAasE 14.4 840.10 21:00.50 487 5850 27 68:20 36 20:6 10:51 22 16:70.80 336 43:7119 51:3156
T5sase 15:2 4:9021 27:90.60 55:9 66:9¢.25 72:50.28 22:5 18:00.46 18:03.95 42:3 24:70 66 53:20.18
Human ‘ 79:5 795 795 ‘ 91:4 91:4 914 ‘ 91:2 91:2 91:2 ‘ 85:6 856 856

Table 2: Accuracies (%) of various PLMs on the three tasks using different probing methods. ZP: Zero-shot probing.
LP: Linear probing. FT: Fine-tuning. LP and FT results Bf@ansiandard deviation  OVver three random trials. Human
performance is obtained by ordinary people trained with a few instances.

2019), which is pre-trained with the unidirectional best con guration in experiments.
left-to-right language modeling objective, and GPT- Linear Probing adds an additional shallow lin-
Neo (Black et al., 2021), which adopts the same obear classi er on top of the output contextualized
jective but improves some implementation detailsiepresentations of PLMs, and only trains the addi-
(3) Sequence-to-sequence LMvhich adopts the tional classi er while keeping the PLMs' parame-
encoder-decoder architecture. This type includegers xed. Since the model capacity of the shallow
BART (Lewis et al., 2020), which is pre-trained linear classi er is too limited to t the tasks, the
with the text in lling and sentence permutation achieved performance shall mainly come from the
objectives, and T5 (Raffel et al., 2020), which isknowledge in the PLMs' representations (Alain
pre-trained with the span-corruption objective andand Bengio, 2017). Hence linear probing is widely
multiple downstream tasks. used in knowledge probing (Tenney et al., 2019b;

In 8§ 4, we report the results of the frequently-Hewitt and Manning, 2019).
usedBASE versions of these PLMs, and results  Fine-Tuning is the standard method to adapt
for the other versions are shown in appendix C. PLMs to downstream tasks, which trains all the
3.2 Probing Method PLM_s' pargm(_aters on th_e tre_lining data with task-

speci c objectives. Considering the strong model

Zero-Shot Probing reformulates probing tasks to capacity of the PLMs, PLMs will inevitably t
the format of pre-training language modeling objecthe probing tasks through the information in train-
tives (Liu et al., 2021a) so that PLMs can do thesgng data rather than only resort to their intrinsic
tasks without any training. It is widely adopted knowledge. Hence the ne-tuning performance
by knowledge probing work (Petroni et al., 2019;sha| serve as anpper boundf the PLMs' con-
Tenney etal., 2019a) since it prevents PLMs fromgeptual knowledge in our experiments.
learning new knowledge from training data so that  ror cSJ and CiC, we take the lled prompts of
the achieved performance re ects PLMS' intrin-jgentical templates in zero-shot probing as inputs
sic knowledge. Hence the performance of zeroang train PLMs with the cross-entropy loss. For
shot probing is commonly interpreted as 0@er  cpj e take the property statements as inputs and
bounc_iof PLMs' knO\_/vIedge (Jiang et al., 2_020). use the binary cross entropy loss.

As illustrated in Figure 2, for each data instance  \1qre detailed implementations about three prob-
of the three probing tasks, we cast its choices |nt%g methods are shown in appendix A.
natural language prompts by lling them into man-
ually designed templates, and then let PLMs scorg Experiment and Analysis
the prompts by the likelihood of language model-
ing. The choice with the highest score is regardedVe rst introduce the overall results in § 4.1 and
as the predicted answer of PLMs. Some implemerconduct detailed analyses on the three probing tasks
tation details like taking which parts of the prompts(88 4.2 to 4.4), respectively. We then analyze the
into scoring calculation may in uence the PLMs' performance at different model scales (8§ 4.5). More
performance. We search these details with prelimiebservations and discussions on experimental re-
nary trials and only report the performance of thesults are placed in appendix B.



Model Hard Distractor  Easy Distractor BERT RoOBERTa GPT-2 GPT-Neo BART T5

BERTgasE 251 157 780 725 64:6 525 659 583
ROBERT&ase 253 157

GPT-Zase 211 170 Table 4: Percentage (%) of false positive predictions
g‘:;’T':fSEZSM 22; igé among all incorrect predictions in ne-tuning results of
TSeaste 24:6 159 various PLMs on the CPJ dataset.

Table 3: Mean reciprocal ranks (%) for hard distractors i betw ined t
and easy distractors on CSJ in zero-shot probing resultrsll erences between ne-grainéd concepts.

of various PLMs. Larger values for higher ranks. 4.3 Conceptual Property Judgment

We analyze the error cases on CPJ and nd that:

4.1 Overall Results o
Conceptual transitivity challenges PLMs. Ta-

The overall ex_perimental results are shown in Table 2 shows that PLMs can achieve high instance-
ble 2, from which we can observe that: (1) All the e accuracies, but all perform poorly in the chain-

PLMs can achieve non-trivial (better_than rando_mIeveI evaluation. It suggests that PLMs can rela-
guess) performance on all the probing tasks withy o \vel| recall the properties for individual con-
zero-shot prpb!ng or linear probing, Wh_'Ch Indl'cepts like recalling the facts about entities in factual
cates that existing PLMs capture a certain CONCeRy,yiedge probing, but hardly understand the hier-
tual knowledge with pre-training on Massive XISy chical relations of concepts and the property tran-
(2) However, even with ne-tuning, all PLMs"ac- giiviry 1t suggests that further PLM works should

curacies are still well below human performance, ; only focus on better memorizing knowledge but
Wh_'c_h urges further effor'Fs on concept—a}warc-_: P'€31so consider how to better organize knowledge.
training. (3) The accuracies of PLMs using differ-

ent types of pre-training objectives are generally°’LMs have conceptual hallucination It has
on the same level. It suggests that any existingeen observed that PLMs frequently generate non-
pre-training objective has no special advantages igensical and unfaithful outputs, which are factu-
understanding concepts and further improvementslly incorrect, and previous work (Rohrbach et al.,
may come from targeted pre-training design. We2018; Reiter, 2018; Ji et al., 2022) dubs this phe-
provide some analyses in the following sections toxomenon asallucination In our experiments, we
help targeted concept-aware PLMs development.observe that many PLMs' failure cases on CPJ task
can be described @®nceptual hallucination.e.,

4.2 Conceptual Similarity Judgment PLMs hallucinate that concepts have certain proper-
We analyze the predictions and performance ofies while they actually do not. As shown in Table 4,
various PLMs on CSJ, and nd that: the errors of most PLMs are generally mainly from

making false positive predictions, i.e., taking false
. _ _ conceptual property statements as true. It suggests
cepts. Asmentioned in 8 2.2, amorgpdistrac- 4t pLMs tend to hallucinate the false conceptual
tor entities,5 of them are hard distractors of con-prgperties as true rather than cannot recall the true
cepts sharing superordinates with the concept Qi ceptual properties, which is interesting and we

the query entity, and the others are easy distragyher explore whether there are certain spurious
tors. For example, if the query entity is blammal . relations causing this.

concept, the entities d@ird concept are hard dis-

tractors and the entities @ountry concept are Word co-occurrence causes conceptual hal-
easy distractors. Table 3 shows the mean reciproc#cination. We hypothesize that the word co-
ranks of these two kinds of distractors. We carPccurrence in the pre-training corpora causes
see that the hard distractors are signi cantly ranked®LMs' conceptual hallucination. For example, if
higher than easy distractors, which indicates thag PLM has seen the texthe temple's Jufu Hall
PLMs generally better distinguish coarse-grainedvas included in the 1998 WorlonumentsWatch
concepts, such as telling the differences betweeby the WorldMonumentsFund (WMF) ...preser-
Animal andCountry, but fail in distinguishing ne- vation of the paintediecoratiori®, it may be more
grained concepts. It suggests that future methods s /on v

3https://en.wikipedia.org/wiki/Temple_of
should focus more on how to capture the subtlegriculture

PLMs better distinguish coarse-grained con-



BERT RoBERTa GPT-2 GPT-Neo BART T5
72:9 759 767 604 718 592

Table 5: Percentage (%) of out-of-context predictions
among all incorrect predictions in zero-shot probing
results of various PLMs on the CiC dataset.

in-context conceptualization abilities rather than
the memorized knowledge about the concepts of
entities, which is evaluated by CSJ. Hence rely-
Figure 3: The false positive rate of BERT's ne-tuning ing on the memories and making out-of-context
results on CPJ negative instances with different BMZ%redictions are wrong for hand”ng CiC. However,
scores. Results of other PLMs are left in appendix C'las shown in Table 5, in most of the error cases,
PLMs wrongly conceptualize the entities within
likely to predict the statementVlonuments are contexts as the default out-of-context predictions.
used for decoratiochas true. We empirically It demonstrates that PLMs conceptualize entities
nd pieces of evidence supporting this hypothey over-relying on memories rather than under-
sis. For each CPJ instance, to assess the wofi§anding the contexts, which re ects the lack of
co-occurrence in pre-training corpora, we retrievedenuine conceptualization abilities. We encourage
the most similar document of it from Wikipedia, future works to study whether the memories inhibit
which is a widely-used corpus in pre-training, with I€arning to conceptualize during pre-training.

tr;e BMZSd(RO\?Ver:tSO?]e:\AaIH 1995)281I1g60rithn(11 im'Understanding hierarchy is more dif cult than
plemented in oosh (Mchaput, ), an us%Iisambiguation. In Table 6, we analyze the two

the ?MZStECO'r% of ihe t?|toh_once I;)j retrt'eveO! docUs ror types on CiC tastDisambiguatiorindicates
ments as the indicator ot this INSances worg, o p| p selects a wrong concept chain for the

co-occurrence rate in pre-raining corpus. _We d' iven entity andVrong Leveindicates the PLM
}”de tthe nbega:tlvbe 'Tﬁt"’_‘ncBel\jzog CPJ datasgt 'Bto CIIE’elects a wrong-level concept in the correct chain.
erent SUbSELS by their SCOres and ObSEIVE, y,q analysis, we only consider entities with more

the false positive rate of BERT's ne-tuning pre- than one concept chain. ThErong Levekrrors

dictions on them. The results are plotted in Fig’take up the majority, which shows that understand-

ure 3 ffom which yve 'can. see that the false pos!tlvqng concept hierarchy is more dif cult than disam-
prediction rates, indicating conceptual hallucina;

. . s biguation for PLMs and how to teach the PLMs to
tion, have strong positive correlations to the BM25

D _ understand it is essential.
scores, indicating word co-occurrence. This sug-

gests that the conceptual hallucination of PLMs4.5  Analysis on Model Scale

comes from capturing the spurious correlations o‘ . . .
. . nspired by recent advances showing the superior
word co-occurrence in pre-training, and further pre-

training work shall explore to x it advantages of large-scale models (Kaplan et al.,
' 2020; Lester et al., 2021), we explore how the
4.4 Conceptualization in Contexts model scale in uences PLMs' conceptual knowl-
edge. We investigate the family of three repre-
sentative PLMs: BERT, GPT-2 and T5. Since
PLMs conceptualize entities over-relying on ne-tuning extremely-large PLMs is too compu-
memories. In CiC, we nd that if we remove tationally expensive, for models with more than
the contexts, PLMs can still predict a possibly2:5 billion parameters, we instead adopt BitFit (Za-
correct concept, which is similar to previousken et al., 2022), which can achieve similar perfor-
works (Petroni et al., 2019; Roberts et al., 2020mance to ne-tuning (He et al., 2021) but requires
Cao et al., 2021) showing that PLMs memorize anuch less computation. The results are shown in
certain knowledge about entities' types. We dubFigure 4, and we have following observations: (1)
these predictionsut-of-context predictionsvhich  Larger-scale PLMs generally achieve better perfor-
can be regarded as the PLMs' memories obtainethance on all the probing tasks, which suggests that
in pre-training. What we evaluate in CiC is the increasing model scale can store more conceptual

We analyze the error cases on CiC and nd that:



Error Type Context Concept Chains

Disambiguation He was nominated by President Person—> BusinessPerson
29:0% Jimmy Carterto the court. Person—> Writer
Person—> Politician

Wrong Level Dolly is running on the grassland. Horse—> Mammai> Animal
71:0%

Table 6: Error examples sampled from zero-shot probing results of B bn the CiC datasettalics denote
entities.Underlines denote model prediction3exts in bold denote answers.

Figure 4: Accuracies (%) of various PLMs at different scales. The accuracies on CPJ are instance-level.

knowledge. However, the improvements broughplorations are limited in the scope of factual knowl-
by increasing model scale are generally marginakdge, ignoring the conceptual knowledge, which
especially on CiC task, and the improvements iris essential for both knowledge bases (Wu et al.,
zero-shot probing and linear probing results are012; Ji et al., 2019) and intelligence (Carey, 1991,
not so obvious like in ne-tuning, which poses a Collins and Olson, 2014). Hence we explore the
question that whether the ne-tuning improvementsconceptual knowledge probing in this paper.
come from the intrinsic knowledge of PLMs. (2)

The ne-tuning accuracies of g with 11 bil-  Conceptual Knowledge in PLMs Previous
lion parameters, are still well below ordinary peoWorks also explore theoncepin PLMs (Michael
ple, which demonstrates that acquiring conceptuggt al., 2020; Talmor et al., 2020; Aspillaga et al.,
knowledge is quite challenging for existing pre-2021; Dalvi et al., 2021), which study principally
training methods, which encourages further effort$similar topics with us. However, theoncepthey

on building concept-aware PLMSs. refer to is essentiallyord sense They focus on
whether PLMs discover the word senses and rec-
5 Related Work ognize their hierarchical relations. While in this

work, we study the concepts de ned in knowledge
Knowledge Probing To understand the successpases to abstract real-world entities, which support
of PLMs, extensive works explore to know what proader applications (Lv et al., 2018; Zhou et al.,
PLMs know, and nd PLMs have strong linguis- 2021 Zeng et al., 2021), and probe knowledge
tic knowledge (Liu et al., 2019a; Hewitt and Man- ahout conceptual similarity and properties of con-
ning, 2019; Tenney et al., 2019b; ikt al., 2020). cepts as well as PLMs' conceptualization ability.
Moreover, it has been shown that PLMs have a cer-
tain world knowledge, which is typically stored § Conclusion and Euture Work
in world knowledge bases, such as the knowl-
edge about entities (Broscheit, 2019; Tenney et alln this paper, we systematically analyze the concep-
2019a) and their relationships (Petroni et al., 201%ual knowledge in existing PLMs by constructing a
Roberts et al., 2020; Jiang et al., 2020; Bouraouhigh-quality conceptual knowledge probing bench-
etal., 2020; Zhong et al., 2021). However, these exnark (COPEN). Extensive experiments show that



existing PLMs have a certain conceptual knowlmentation License The GenericskB corpfiss
edge, but are signi cantly worse than humansshared under the CC BY 4.0 licedséThese are
even with billions of parameters. We further nd all public and established resources, which are in-
that PLMs fail in distinguishing ne-grained con- tended to support broad arti cial intelligence and
cepts and understanding concept hierarchy, andLP research. We believe these resources are well
suffer from conceptual hallucination caused bydesensitized and anonymized. (2xta annota-
word occurrence and out-of-context bias. In the fution. We invite 19 annotators without background
ture, inspired by works infusing factual knowledge,of expertise to annotate our datasets and produce
we will try to develop conceptual knowledgeablehuman performance. They are all employed by
PLMs by exploring concept-aware pre-training ob-commercial data production companies. The in-
jectives and knowledge-enhanced architectures. vited annotators are fairly paid according to agreed
working hours and prices. The annotators are all
Limitations informed about how the data will be processed,
used, and released, and this is con rmed in the data
production contract. (3ntended use. COPEN
is a high-quality benchmark used for evaluating
conceptual knowledge in PLMs and developing
oncept-knowledgeable PLMs. Researchers can
use COPEN to assess new concept-aware objec-

construct multilingual COPEN. (ZJarge PLMs. tives and conceptual-knowledge-enhanced archi-

We do not experiment on very large PLMs, such as . : Sl )
ectures. (4Misuse risks. Considering COPEN is
GPT-3 (Brown etal., 2020) and PaL.M (ChOWdherybuilt on top of a limited scope of natural texts and

et al., 2022), due to our limited access to them. W% . L .
' C . . h b thod tabl db
conduct experiments on Ths with 11 billion pa- € probing Methods are inevitably In uenced by

ters instead. E . tal its i tsome spurious correlations, a good enough perfor-

{sn?[e ers instead. xpterlrlnlt(en a Ire;u S err_ltonshralr%ance on COPEN cannot fully guarantee that the

at acquiring conceptual knowledge 1s quite © aaeveloped methods really understand concepts and
lenging for existing pre-training methods, which

S . hall not be used to support relevant commercial
urges concept-aware pre-training objectives an§‘

del architect ) al N nd political claims. (5Potential risks control.
modet archiiectures. (Bnvironmenta MPACL"  The texts in COPEN are from public data and do
In this paper, we conduct a lot of experiments with

various PLMs, some of which even contain severaPOt involve private information, sensitive topics
- ’ and social issues. The three tasks in COPEN also
billions of parameters. It consumes large amount

of enerav and causes large amounts of carbon dio?o not involve sensitive topics or social issues. We
. gy €S arg o manually check some randomly sampled instances
ide emissions, which incurs negative in uence to

. I | h in COPEN and nd no sensitive information or
our epvwonment (Strubell et al., 2919)' .Butt ©other risky issues. Hence we believe that COPEN
experiments are necessary for drawing falthful_ anéd)oes not create additional risks.
comprehensive conclusions. We hope our ndings
could facilitate further research on more powerful
PLMs with fewer parameters.

In the section, we discuss the limitations of this
work: (1) COPEN benchmark. COPEN only in-
volves English corpora, which limits the use of the
benchmark to PLMs pre-trained on other language
In the future, we will consider more languages an
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Appendices Model CsJ CPJ Cic

BERTgAsE Query Entity Concept All
RoBERTaase Query Entity Concept Concept
Model model_name GPT-Zase All All Concept
BERTsmaLL prajjwall/bert-small GPT-Neazsw  All Concept  Concept
BERTmeDIUM prajjwall/bert-medium BARTgAsE Query Entity Concept Concept
BERTsasE bert-base-uncased T5sase Query Entity  Concept  All
BERT_arGE bert-large-uncased
ROBERTaase  roberta-base Table 8: The text parts used to calculate scores of
CPTZase  gptz s hot probing on the three datasst
GPT-Zuepium  gpt2-medium prompts in zero-shot probing on the three dataskits.
GPT-2 arce gpt2-large use the negative perplexities of prompts as scores. The
GPT-X. gpt2-xI meanings of the other text parts are shown in Figure 2.
GPT-Neazsw  EleutherAl/gpt-neo-125M
BARTgAsE facebook/bart-base
TosmaLL t5-small Hyperparameters We set the learning rate as
T5ease t5-base yp p3 _ g
T5LaRGE t5-large 1 10 °and apply early stopping (Prechelt, 1996)
Tos t5-3b on the accuracy on the development dataset with a
T5118 t5-11b

patience of 20 epochs. We keep the other hyperpa-

Table 7: The correspondingodel_nanin Transform- '@meters the same as in Table 10.

ers library (Wolf et al., 2020) for different PLMs. ) )
A.3 Fine-Tuning
We follow the ne-tuning methods in original
papers to ne-tune BERT (Devlin et al., 2019),
We use the implementation code and pre-trained p&®oBERTa (Liu et al., 2019b), GPT-2 (Radford
rameters of PLMs released in HuggingFace Transt al., 2019), GPT-Neo (Black et al., 2021), and
formers library (Wolf et al., 2020) to run our experi- BART (Lewis et al., 2020). As in appendix A.2,
ments. Thanodel_namewe used in Transformers we reformulate the original instances into the text-
for different PLMs are shown in Table 7. We run to-text format for T5 (Raffel et al., 2020), and the
experiments for large models (3% and Tg1g) on  input and output formats are shown in Table 9.
NVIDIA V100 GPUs, which approximately con-

sumes 160 GPU hours, and the other PLMs offyperparameters We follow the hyperparame-
Nvidia GEFORCE RTX 3090 GPUs, which con-ters mostly used in previous literature. The hyper-
sumes about 300 GPU hours. We will introduceParameters are shown in Table 10. And we apply
the implementation details for zero-shot probinge@rly stopping (Prechelt, 1996) on the accuracy on
(appendix A.1), linear probing (appendix A.2), andthe development dataset.

ne-tuning (appendix A.3).

A Implementation Details

Parameter-ef cient Tuning for Big Models
A.1 Zero-Shot Probing Due to the limits of computation, we consider the

As mentioned in 8 3.2, we take different text partsparametejr?ef cient tuning for models with more
of the prompts into scoring calculation. Table 8than2:5 billion parameters (T$s and T31g). Pre-
yious works (He et al., 2021) have proven that

parameter-ef cient tuning methods can save GPU
memory, accelerate training for PLMs, and achieve
A.2 Linear Probing comparable performance to ne-tuning all parame-

We use the nal outputs of speci ¢ tokens as theters, especially at large scales. Therefore, we adopt
features extracted by PLMECLS] for BERT: <s> BitFit (Zaken et al., 2022) implemented by Open-
for ROBERTa: the last token for GPT-2, GPT-Neo,Delta’ to ne-tune big models.

and BART; the rst token for T5. We then tune a ) . .

lightweight linear classi er on the xed features B More Discussions on Experimental

for BERT, ROBERTa, GPT-2, GPT-Neo, BARTand ~ Results

tne the nal vocabulary classi catl_or_w hegd forT5. 1 the section, we discuss some detailed and inter-
Moreover, we reformulate the original 'nSt?‘nceSesting observations.

into the text-to-text format for T5, and the input

and output formats are shown in Table 9. Ohttps:/igithub.com/thunlp/OpenDelta

shows the text parts used by various PLMs to scor
prompts on the three datasets.



Conceptual Similarity Judgment

Original Query : Inter Milan

Original Candidates: Milan, Milan Fashion Week, Pohang Steelers, Series A

Original Label : Pohang Steelers

Processed Input choose the most similar entity to Inter Milan: (A) Milan, (B) Milan Fashion Week, (C) Pohang Steelers, (D) Series A.
Processed LabelC

Conceptual Property Judgment

Original Statement: Mammals raise their young on milk.
Original Label : True

Processed Input verify: Mammals raise their young on milk.
Processed Labeltrue

Conceptualization in Contexts

Original Context: Dolly is running on the grassland.

Concept Chain Horse —> Mammal —> Animal

Original Label : Animal

Processed Input select concept: <entity> Dolly </entity> is running on the grassland. Select a contextually related concept for
Dolly from (A) Horse, (B) Mammal, (C) Animal.

Processed LabelC

Table 9: The input and output format used to linear probe and ne-tune T5 on the three datasets.

CSJ CPJ CiC
The Others T5 The Others T5 The Others T5
LearningRate] 3 10° 5 10 ° 3 10° 5 10° 3 10° 5 10°
Weight Decay| 1 10°% 1 10° 1 105 1 10° 1 105 1 10°
Batch Size 4 16 64 32 4 16
Warmup Rate 01 01 01 01 01 01

Table 10: Hyperparameters used to ne-tune PLMs on COPEN.

CsJ CPJ CiC

Query Entity  Candidate Entity All Concept Answer All| Concept All
BERTsmaLL 15:0 6:5 81 50.7 485 515 319 351
BERTvEDIUM 16:8 72 100 49:3 46.7 492 29:6 333
BERTsase 20:3 75 113 49:4 472 492 326 376
BERT_arGE 22:3 8.2 134 50:5 47:6 504 311 36.9
RoBERTa&ase 155 51 100 49:2 467 476 314 255
GPT-Zsase 2:9 6.6 79 49:4 484 515 3223 311
GPT-2uepium 3.7 86 105 52.0 472 A4AT2 303 320
GPT-3 ArRGE 4.6 90 113 518 47.3 472 343 338
GPT-%, 3.9 96 117 50.7 472 471 353 370
GPT-Nea2sm 2:6 6.6 79 52:2 472 476 326 288
BARTgAsE 14:4 5.0 71 48.7 484 480 336 274
T5smaLL 11:6 5.4 6.5 52:5 476 532 349 401
T5sase 15:2 7.2 103 55.9 472 495 391 423
T5.ARGE 20:9 7.8 140 52:4 47.2 498 405 426
THss 19:2 79 141 49:4 477 494 386 470
T5118 248 7.8 145 46.7 467 499 372 413

Table 11: Overall zero-shot probing accuracies (%) of using different text parts to score prompts on COPEN.



Model Linear Probing Fine-tuning
Seed=42 Seed=43 Seed=44 Mean St8eed=42 Seed=43 Seed=44 Mean Std
Conceptual Similarity Judgment
BERTsmaLL 9.1 82 8.9 87 037 17.6 17.1 192 180 091
BERTwvEDIUM 131 123 131 128 0:35 20:3 21:1 21:6 21.0 057
BERTgAsE 16:3 16:3 15.8 161 021 285 26.6 269 27:3 086
BERT.ARGE 165 169 17:3 169 031 287 30:2 295 295 061
ROBERTa&ase 118 120 123 120 021 22:8 21:6 224 223 051
GPT-ZasE 4.6 4.1 4.1 43 024 19.7 201 20:3 201 023
GPT-2vepium 5.3 52 5.2 52 002 24:9 22:2 230 234 1:15
GPT-2 ArRGE 4.0 6:8 5.6 55 113 22:2 24:.0 234 232 077
GPT-2. 7:8 15.0 101 1.0 3:.00 259 24:2 257 253 075
GPT-NeaQzsm 11:1 107 11:2 11:.0 0:20 18:8 184 17:8 183 0:42
BARTgAsE 8.5 83 84 84 010 20:4 21:0 217 21:0 050
T5smaLL 4:8 4:8 4.7 4.8 0.05 10:1 17:6 6:9 115 448
T5gasE 5:2 4.8 4.7 49 021 274 275 287 279 060
T5LARGE 4.7 4.9 4.8 4.8 0.09 31.0 334 325 323 101
T53s 5.0 4.9 5.2 50 011 41.0 406 42.0 412 061
T5118 4.7 4.7 4.7 47 001 437 436 438 437 0.08
Conceptual Property Judgment
BERTsmaLL 57:8 588 57:8 581 047 66:3 66.5 67:2 667 0:39
BERTwmEDIUM 58:2 59.6 585 588 059 66.7 67:5 67:3 672 035
BERTgasE 61:2 61:9 61:5 616 028 66:8 683 692 681 098
BERTL.ARGE 61:6 617 59.0 608 1:26 67:8 69.6 71:2 695 141
ROBERTa&ase 617 620 619 619 013 714 727 718 720 054
GPT-Zase 65:2 633 66.0 648 114 713 69.5 70.5 704 072
GPT-2vepium 67:0 67.4 67:4 67:.3 017 73.0 68.6 729 715 207
GPT-2 arGE 66:2 67:8 66.8 669 062 74:5 727 734 735 074
GPT-2. 67:8 681 686 682 036 745 75.1 747 748 022
GPT-NeQ2sm 61:9 624 621 622 021 68:9 684 67:4 682 062
BARTgAsE 58:8 582 587 585 0:27 68.5 692 671 682 086
T5smaLL 677 672 65.0 666 1:.18 713 722 721 719 040
T5sase 67:3 66.8 66.8 669 025 72:6 721 72:8 725 028
T5LARGE 68:9 69.7 69:3 693 033 725 734 752 737 110
T538 69:2 69.7 69:5 695 022 76:6 76.6 76.2 764 019
T5118 67:3 66.5 66.0 666 053 78:2 783 792 786 046
Conceptualization in Contexts

BERTsmaLL 324 327 333 328 038 44.6 47.0 48.4 466 155
BERTwMEDIUM 316 312 311 313 022 49:4 491 498 494 031
BERTgasE 336 345 350 343 059 49:3 489 50:3 495 0.60
BERT_ArRGE 354 389 353 366 1.67 50:7 530 51:6 51:8 0:92
ROBERTa&ase 27:3 320 307 300 1.98 51:3 526 538 526 1.02
GPT-Zase 317 36,7 351 345 208 54.0 542 54:3 542 012
GPT-2vepium 29:3 25.6 291 280 1:.69 54:6 545 549 547 014
GPT-2 arGE 32:8 288 337 31:8 216 534 527 536 533 036
GPT-Z. 277 322 299 299 1.83 52.6 54:4 544 538 0.88
GPT-Nea2sm 389 389 409 396 093 47:6 47.0 475 474 0.25
BARTgAsE 44:1 421 449 437 119 50:8 497 535 51:3 156
TSsmaLL 257 26:1 249 256 053 435 44:4 450 443 0.64
T5gAsE 255 239 247 247 066 532 533 52:9 532 0:18
T5LARGE 24:3 243 253 246 049 52:4 56,9 572 555 221
T53s 26:7 275 26.8 270 035 59:2 575 559 575 135
T5118 251 26.6 264 260 066 56.7 587 565 573 097

Table 12: Overall linear probing and ne-tuning accuracies (%) of all PLMs on COPEN. We run experignents
times using three seed$2, 43, 44. Mean: mean accuracy of the three trials; Std: standard deviation.



Comparison of Pre-training Method In Fig- Model Disambiguation ~ Wrong Level

ure 2, we can observe that: (1) For PLMS using  BERTsase 29:0% 71:0%
the same architecture, T5 generally outperforms  ROBERTa&ase 12:8% 87:2%

GPT-Zase 12:5% 87:5%
BART,. and BERT generally outperformg RoBERTa. GPT-Neasen 119% 88104
The differences may come from the different pre-  BARTgase 11:5% 885%
training corpora. (2) Autoregressive LMs (GPT-2, ~ TSease 32:0% 680%

GPT-Neo) perform worse on CSJ, which is con-

sistent with the observations on factual knowledge 22/ 13: The proportion of different error types of

. . zero-shot probing results on the CiC dataset. We only
probing (Liu et al., 2021D). AS_ we are the rstto consider the entities with more than one concept chain.
study conceptual knowledge in PLMs, we focus

on the general question “to what extent do current

PLMs understand conceptual knowledge?” andan the CPJ dataset (appendix C.1), error analysis
provide more general conclusions in the paper. Wen the CiC dataset (appendix C.2), and analysis on
leave the detailed and in-depth analysis of a spevoiding dataset artifacts (appendix C.3).

ci c PLM, e.g., layer-wise analysis (Dalvi et al.,

2021), in future works. C.1 Conceptual Hallucinationon CPJ

Figure 5 shows the false negative rates on subsets
with different BM25 scores for various PLMs. We
can observe that the false positive rates, which indi-
cates conceptual hallucination, have strong positive
correlations to the BM25 scores, which indicates
word co-occurrence.

Comparison of Probing Method Intuitively,
zero-shot probing re ects théower bound of
PLMs' knowledge (Jiang et al., 2020), while linear
probing learns a task-speci c linear classi er and
performs better than zero-shot probing, and ne
tuning re ects theupper boundf PLMs' knowl-
edge. However, as shown in Figure 2, linear probe.2  Error Analysis on CiC

ing sometimes underperforms zero-shot probingr . .
L ) able 13 shows the proportions of different error
especially in CSJ and chain-level CPJ. The reaso prop

. {;ypes. We can observe that in most wrong predic-
may be that the concepts used for training and tesf:
tions, PLMs select concepts of wrong levels. It

ing are disjoint, and _Ilnear probing qulves train indicates that PLMs lack a comprehensive under-
able parameters, which may learn spurious or shal-_ .. . .

: - standing of concept hierarchy and fail to conceptu-
low correlations on training sets and hence stru

o ) ) Y% jize entities according to contexts.
gles on generalization. Meanwhile, ne-tuning still

performs poorly, which demonstrates that existingc. 3 Analysis on Avoiding Dataset Artifacts

PLMs systematically lack conceptual knowledge. ) ) .
y y P 9 Dataset artifacts leak shallow information and

Comparison of Instance-Level and Chain-Level cause the PLMs to learn spurious correlations
CPJ For chain-level, BERT performs the best,rather than exhibit inner knowledge. When con-
but for instance-level performs worse than T5. Thestruct COPEN, we avoid two kinds of artifacts:

reason may be that BERT better understands COEéxical Overlap means that the query and the an-

C.ep't transitivity (I.e., making more consistent p.re-swer have word overlap, which may enable PLMs
dictions) but stores fewer conceptual propertie

: -to make correct predictions using spurious corre-
overall. A thorough and comprehensive analysg : .
. . . -lations without the correct knowledge. For ex-
is needed on this phenomenon and we leave it in : . L

ample, in CSJ, if the query entity iStanford

future works. ) : : : )
University and the answer entity I3niversity
of California ;in CiC, if the context isShe grad-
uated fromStanford University and the answer
Table 11 shows overall zero-shot probing results orroncept idJniversity ; they have lexical overlap.
COPEN. The experimental results of linear prob- We conduct experiments on the data with lex-
ing and ne-tuning are obtained &trandom trials ical overlap. As shown in Table 14, on the data
using seedd2, 43, 44. Table 12 shows overall with lexical overlap, PLMs perform much better.
linear probing and ne-tuning results on COPEN.But this should be interpreted as they learn shallow
And we provide additional results for the analytical clues leaked by artifacts since they cannot achieve

experiments: analysis @bnceptual hallucination similar performance on data without lexical over-

C Additional Experimental Results
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Figure 5: The false positive rate of various PLMs’ fine-tuning results on negative instances of the CPJ dataset with

different BM25 scores.

Model CSJ CiC
w/LO w/oLO | w/LO w/oLO
BERTgAsE 68:9 20:3 52:5 37:6
RoBERTagasE 62:2 15:5 48:5 314
GPT—ZBASE 34:2 7:9 43:8 32:3
GPT-Neoi2sm 34:0 7:9 52:4 32:6
BARTgAsE 75:9 14:4 53:2 33:6
TSgasE 69:2 15:2 62:7 42:3

Table 14: Zero-shot probing accuracies (%) of PLMs on
data with lexical overlap (w/ LO) and without lexical
overlap (w/o LO). We collect 688 and 1; 200 instances
with lexical overlap for CSJ and CiC, respectively.

lap. Hence, we filter out all instances with lexical
overlap in COPEN to avoid this kind of artifact.

Concept Overlap is that the same concepts show
up in both training and test datasets, which may
leak conceptual knowledge, i.e., the PLMs may
learn some knowledge from training data. In
COPEN, as mentioned in § 2.1, we split different
top-level concepts and their subconcepts into differ-
ent sub-datasets, so as to avoid concept overlap. To
empirically show the influence of concept overlap,
we randomly re-split the datasets into same-size
training, development, and test sets and see the
fine-tuning performance on the new split.

The results of fine-tuning BERT are shown in
Figure 6, and the results of fine-tuning and linear
probing for all PLMs are shown in Table 15. Fine-

mmm w/o concept overlap
B w/ concept overlap

Accuracy (%)
B w (o)) ~
o o o o

w
o

Cs) CPJ cic

Figure 6: Fine-tuning accuracies of BERTpasg on data
with and without concept overlap.

tuning on datasets with concept overlap achieves
much higher accuracies, especially on CSJ. It indi-
cates that if we do not avoid concept overlap, PLMs
can easily learn conceptual knowledge from train-
ing data and lead to false optimistic conclusions.

D COPEN
We provide a detailed introduction to COPEN.

D.1 COPEN Taxonomy

Disjoint Concepts We divide all the concepts
into two disjoint sets: one set containing 11 top-
level concepts together with all their sub-concepts
for constructing training and development datasets,
and the other set containing the other concepts for



Model CSJ CPJ CiC
w/CO w/oCO | w/CO woCO | w/CO w/oCO
Linear Probing
BERTgAsE 20:0 16:1 64:1 61:6 46:5 34:3
RoBERTagasE 12:3 12:0 65:9 61:9 45:4 30:0
GPT-2gasE 5:2 4:3 67:2 64:8 39:0 34:5
GPT-Neoi25m 15:4 11:0 64:6 62:2 58:3 39:6
BARTgASE 9:4 8:4 62:6 58:5 50:2 43:7
T5BASE 4:7 4:9 68:8 66:9 33:9 24:7
Fine-tuning
BERTgASE 63:4 27:3 75:4 68:1 65:4 49:5
RoBERTagasE 61:0 22:3 77:0 72:0 66:6 52:6
GPT-2BAsE 49:9 20:1 727 70:4 65:4 54:2
GPT-Neoi25m 44:3 18:3 71:2 68:2 62:5 47:4
BARTgASE 547 21:.0 73:1 68:2 67:4 51:3
T5BASE 50:6 27:9 77:6 72:5 67:6 53:2

Table 15: Accuracies (%) of linear probing and fine-tuning on data with concept overlap (w/ CO) and without

concept overlap (w/o CO).

#Concepts  Top-Level Concepts
Training& 248 Organisation, Name, Award, MeanOfTransportation, Colour, Language, Person,
Development Holiday, Work, Currency, EthnicGroup
Testi AnatomicalStructure, Species, Food, Event, TimePeriod, ChemicalSubstance,
esting 198

Place, Device, Disease, Activity, Biomolecule, SportsSeason

Table 16: The top-level concepts and the number of concepts used for training, development, and testing.

testing datasets. As shown in Table 16, there are
248 concepts including 11 top-level concepts for
training and development datasets and 198 con-
cepts including 12 top-level concepts for testing.

Concept Hierarchy We present the concepts
for training and development datasets in Figure 7
and the concepts for testing datasets in Figure 8.
Object is a virtual concept for visualization and is
not included in the overall 446 concepts.

D.2 Concept Similarity Judgment

Human Performance We sample 1;000 in-
stances from the testing dataset and invite anno-
tators with no linguistic background to perform the
CSJ task. All the annotators are trained with a few
instances before the evaluation.

Co-occurrence-based Filtering We filter out in-
stances of which query entities and answer entities
have a high association, which are estimated by
cosine similarity of their Glove word embeddings.
Specifically, for a query entity, we sample 5 answer
entities and select the entity with the lowest asso-
ciation with the query entity as the answer entity.
Then we choose distractor entities iteratively fol-
lowing the rules: (1) Sample a distractor entity, if

the entity has a higher association with the query
entity than the answer entity, then select the distrac-
tor entity as a candidate entity. (2) If not, select the
distractor entity as a candidate entity with a 20%
probability, otherwise start the next iteration until
the number of distractor entities reaches 20.

D.3 Conceptual Property Judgment

Human Annotation We invite annotators with
no linguistics background to check whether the
instances are correctly labeled, grammatically cor-
rect, and describing concept properties. All an-
notators are well-trained and required to pass a
qualification before the annotation. The instances
originally labeled as false are annotated 4 times,
and the other instances are annotated once. During
the annotation, an author of the paper and another
experienced annotator separately sample 10% of
the instances to check the quality of annotation.
The acceptance criterion of the annotation is that
the percentage of obvious annotation errors in the
sampled instances (e.g., label the statement The sun
has two eyes as true) does not exceed 3%, and the
inter-annotator agreement rates exceed 85% for the
instances annotated 4 times. Major voted results of
the instances annotated 4 times together with the



instances annotated once constitute the CPJ dataset.

Human Performance We use the 2;159 in-
stances that are annotated 4 times in the testing
dataset to evaluate human performance. We con-
duct a 4-round evaluation: take the major voted
results of 3 annotators as labels and the other one
as human predictions to calculate the accuracy of
the round. The mean accuracy of 4 rounds is re-
ported as the human accuracy on the CPJ dataset.

D.4 Conceptualization in Contexts

Human Annotation We invite annotators with
no linguistics background to annotate the dataset.
To ensure quality, all annotators are well-trained
and required to pass a qualification before the an-
notation. All instances are annotated four times.
Moreover, during the annotation, an author of the
paper and another experienced annotator separately
sample 10% of the examples to check the qual-
ity of annotation. The acceptance criterion of the
annotation is that the percentage of obvious annota-
tion errors (e.g., Select Horse for Dolly according
to the context Dolly is running on the grassland.)
does not exceed 3%, and the inter-annotator agree-
ment rates exceed 80%. Major voted results of the
4 annotated results constitute the final CiC dataset.

Human Performance We use all instances in
the testing dataset, which are annotated 4 times,
to evaluate human performance. We conduct a 4-
round evaluation: take the major voted results of 3
annotators as labels and the other one as human pre-
dictions to calculate the accuracy of the round. The
mean accuracy of 4 rounds is the human accuracy.






